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1. INTRODUCTION 

Let A, B, C, . . . lie in Z,, the 2 x 2 matrices over the rational integers. 

Similarity under integral unimodular transformations defines equivalence 

classes. Taussky [Ei, 6, 71 studied the structure of these classes, with 

special attention to those containing symmetric matrices. We shall 

determine 

(i) the number of symmetric matrices in each equivalence class, 

(ii) the transformations relating the symmetric matrices in a class, 

(iii) the structure of the symmetric matrices in a class. 

Let p(x) be an irreducible manic quadratic polynomial over Z, the 

rational integers. Let 8 be a root of 9 = 0. A correspondence has been 

established [4, 51 between classes of ideals of Z [O] and classes of roots 

of p = 0 in Z,. It is given by 

fq+-+ W(A), (1) 

where AZ = &, the components SC,, % of z are in Q(0), and 

a = zu, + zu,. 

The map g(A) - q(0) defines a natural isomorphism between Q(A) and 

Q( 0)) where q{(x) E Q [xl. Define R(A) under this map by 

Q(A) n Z+qA). ( ) 2 

* I should like to thank my advisor, Dr. Olga Taussky Todd, for her &xl on my 
thesis [l]. This is a new presentation of the last chapter. 
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It is easily seen that R(A) depends only on the class of A : if T is integral 

and unimodular, then q(A) E Z, if and -only if 

q( T;TA T-1) = Tq(A) T-l E Z,. 

Since symmetric matrices have real roots, we shalt! assztme that 0 is real. 

2. THE NUMBER 

‘We now determine the classes containing symmetric matrices (see [7]) 

and the number in each such class. Let a’ be the complement of the 

ideal a. (For details see [3, p. 411.) It is known [7] that %(a’) tj G!?(X) 

when (1) holds. 

THEOREM 1. Let %(A) t3 g(a). Then V(A) copztains a symmetric 

matrix if and only if a := Aa’ for some 2 with ??A > 0. If %‘(A) contains 

a symmetric matrix and if R(A) has (does not have) a wit of norm - 1, 
then %(A) contains 4 (8) symmetric matrices. 

Proof. Apply [2, Theorem 61 with 12 = 2. If NA > 0, then 1 or - 2 

is totally positive. In the notation of [e], the number of symmetric 

matrices is 4 iv” : U2], where u“ is the group of totally positive units 

in R(A) and U2 is the group of squares of units in R(A). Clearly [UN : U2] = 

1 if R(A) has a unit of norm - 1, and 2 otherwise. 

COROLLARY. If R(A) contains a unit of norm - 1, then %‘(A) contains 

a symmetric m&ix if and only if A’ E V(A). 

Proof. A’ E %(A] if and only if a’ E ‘%(a) by the remark preceding 

the,. theorem. Let a = la’. If Na < 0, replace il by ilq where 7 E R(A) 
is a unit of norm - 1. 

COROLLATZY [6]. If Z LO] is the ring of ir:izgers in Q(O), then V(A)+-+ 
%(a) contains a .yvnmletric m&ix if and only if a2 :== (p) for some p E Q(0) 
with xy < 0. 

Proof. The different of Q(0) is (p’(0)) where p is the manic quadratic 

polynomial with 0 as a zero. Hence a = ila’ is equivalent to a2 = 
(@‘( 0)). Since Np’(Q) c 0, the corul&ry is proved. 
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3. THE SIMILARITY TRANSFC?;7cMATIONS 

The similarity transformations relating the symmetric matrices in 

a given class are closely related to the gaussian integers Z [i] and certain 

quadratic diophantine equations. 

It is well known that every integral domain which is a quadratic, 

integral e&en&n of Z is principal. Hence we may write 

A(A) = Z[co = (1 + Vrn)/k], (3) 
where (2) defines R(A) and m E Z and k = 1 or 2. Under the natural 

isomorphism Q(A) -7 Q(B) we have 

-+m V for some a, bE %. 

The gaussian integer associated with A is 

~(-4) = a + bi. 

LEMMA. Let A and l3 be equivalent symmetric matrices. For some 
I, j.4 E Z [i] we have 

y(A) = &G and y(B) = @i. (5) 1 

The values of A and p are unique up to sign. 

Proof. Let 0~ = y(A) and p = y(B). Since K(A) = R(B), we have 

(i) N(a) = m = N(p), 
(ii) 01 s i(mod 2) if and only if p z i(mod 2), 

since these are equivalent to k = 2 in (3). From (i) and the structure 

of Z [i], it follows that there are 2, ,U E Z [i] such that a = @ and p = 
in@ for some n E Z. By the definition of oc = y(A), it hollows that no 

rational prime divides 6. Applying this to the prime 2 and using (i) and 

(ii), we get 0t ~5 fi(mod 2’). However, @ s @(mod 2). These ?re compat- 

ible if and only if n is even or OL E 1 .+ i(mod 2). In the latter case 1 + i 

divides ;. or ,u, and moving it from one of A, p to the other changes the 

parity of n. Hence we may assume n = 0 or 2. If n = 2, replace A by 
Ai and p by .- ,ui. 

We now prove uniqueness. Assume ot = il,~, = &p2 and P = 3L1p1 = 
1 z,&. Then 
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P =ruh = w?4 = iwl = Fe 

Hence p is real. We may nrite p = c/d Acre @, d E Z and gcd(c, d) = 1. 

Suppose ICI > 1. Then a i*ational prime divides A1 = c&/d and hence 
OC, which we have noted is impossible. Thus 1~1 = IdI =e: 1. 

The matrix representation of the complex number x _t- iy is 

# Y 
K(x + iY) = __ x * ( 1 

Id 

0 1 
P 

=lo’ ( ) 
then (4) becomes PK(y(A)) -•, j/Z We also have K(a) P = PK@). 

THEOREM 2. Let A # B be symmetric and eqhalent. A transformation 

7’ sakg%es TA = BT if and only if it has the @rm 

T = xK@) -+ yPK(& (6) 

whewe x and y are scalars and (6) defines il afid p. 

Proof. Given A and B, choose A and/d. Instead of A and B in TA = 

BT we ma,y consider PK(y(A)) and PKti(B)) since they also generate 
R(A) and R(B). We have 

K(P)PK(Y(A)) = PK(F)K(AP) 

= PK($i)K(p) 

= PK(y(B))K(!4 

and 

PK(a) PK(y(A)) = PK(A)K@) PK(A) 

= PK(y(B))PK(R). 

Hence any T of the form (6) works. Conversely, 
y so that 

W = T - xK(& - yPK@) 

Linear Algebra and Its Applications 1, 196-201 (1965) 
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has as many zero entries as possible. It has at least two zero entries 
since K(p) and PK(A) are linearly independent . The ( !qua t ion 

can be used to show that W = 0. 

There are four rather trivial choicer; for the pair (A, p), namely (a, I), 

(I, a), (k - a), and (i, - ia). These correspond to T = I, P, M(i), and 

PK(i) and also to y(B) = a, E, - a, and - E. 

The determinant of (6) is easily seen to be x2Np - y2NA. This together 

with Theorems 1 and 2 enables us to dedu.Te a result in diophantine 

analysis : 

THEOREM 3. TIze diofihalztine equation 

wx2 - E,e = k2, 
w ( > 7 

where m and k satisfy (3) for some symmetric A, has solutions for brecisely 
two positive divisors w of m. 

Proof. For any solution of (7) choose A and p so that X1 =: m/w 

and N,u = w and 1~ = y(A). Let 

T = + (S(p) -+- yPK(iz)). 

Then det T = & 1. Clearly kT E X2. Assume k = 2. As noted in the 

proof of the lemma, A,u = i(mod 2). IIence A G ip(mod 2). By (7) we 
have x = _ y(mod 2). These congruences car. be used to show that T E Z,. 

We could replace the pair (A, ,u) by any of (,u, A), (iA, - +A), and 

(P i ,- iA). By Theorem 2 these all lezd to distinct values for B. The 

same B’s are obtained when w is replaced by m/w, so there is a potential 

pairing of solutions to (7). We now use Theorem 1. 

(i) If R(A) h as a unit of norm - 1, then there are four possible 

values for B (including A itself). Thus the solutions of (7) occur with 

W = 1 and m (the latter due to the unit of norm - 1). 

(ii) If R(A) h as no unit of norm - 1, then there is a solution for 

some w with 1 < w < m. The potentiai pairing of solutions (w and m/w) 

cannot occur as we now show. Construct T(w) using (A, p). Then we have 
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T(w)A T(w)-l =I 13 = T(m/w)A T(m/w)-1. 

Hence V = T(Gz/zu)T(zQ)-~ commutes with 11. It is well known that this 

implies that V is a polynomial in A. Since V is integral and unimodular, 

it is the image of a unit in R(A). On the other hand, det T(w) = 

- det T(m/@ so det V = - 1. 

4. THE MATRICES IN A CLASS 

We assume one symmetric matrix is known and we wish to find the 

rest in its class. If UJ in (7) can be found, then four pairs (&u) are 

determined. By (5) we can determine four symmetric matrices similar 

to A. (As remarked after Theorem 2, if one of these is B and if y(R) = /3, 

then the other three correspond to B, - ,8, and - p.) This procedure avoids 

the determination of T. Since m and k depend only on R(A), the same 

is true of w, so it is natural to define 

a(a) = {w m/w}, 

where R(A) = 2 [w] and w > 1 is a solution of (7). Using the continued 

fraction approach to ideal equivalence, it is feasible to construct a large 

table of o using a digital computer. Some properties of o are given below. 

THEOREM 4. If all the u’s mentioned aye defined, then 

(i) 1 E a(w) if and only if Z [co] has a unit of norm - 1; 

(i’) if 1 E a(Zw), then 1 E a(o) ; 

(ii) o(VG) = a((1 + VG)/2) ; 

(iii) if Zlm either of a(wj a?Jd a(&~) determines the other; 
(iv) if a(m) = (a, b) alrnd p is an odd prime, then a(#~) is one of 

(ab, p2}, (a, bp”), Nnd (ap2, b) ; 
(vj if ~5 is aa odd prime divisor of m, thtiv that eleme& of O(CO) which 

is @ime to p is also a quadratic residtie of 9. 

Proof. (i) This follows from considerations in the proof of Theorem 3. 

(ii) Any solution to (7) for k = I yields an obvious solution for 

k = 2. By Theorem 3, this determinks all values of w for k = 2. 

(iii) If 1 E a(&~), we are done by <it!. Induct on 1. If 211 we are done 

by (ii). Let PI2 be an odd prime. Assume 1 $ o(Zm) = {a, b}. We have 

2% and, since gcd(a, b) = 1 or 2, PSI, or b. We can combine a factor 

Linear Algebra and Its Applications 1, 196-201 (1908) 



CLASSES OF MATRICES AND QUADRATIC FIELDS 201 

of fi2 with x2 or y2 in (7). This produces, say, a’ and h’ neither of which 
is 1. Hence a(kculp) = {a’, b’}. The process is reversible since we have 

just shown that 1 $ a(d) implies 1 $ a(mje 

(iv) Like (iii), but the conclusion that 1 & {a’, b’} does not hold. 

(v) Reduce (7) modulo p. Since m must be a sum of two squares 

( m = A+(A)), we have that - 1 is a quadratic residue of +. 

By an elementary but involved elimination of cases relying on Theorem 

4, it can be shown [l, pp. 95-971 that if #, Q, and Y are primes congruent 

to 1 modulo 4 and if a(~) is defined, then a(&~), C@WP)~ and a(qr~~) 

determine ~(pgrco). No result of this form holds for two primes: the ‘* 
following examples were found on an H3M 7094. 

o~1/6i!7) = {13,17) o(VFi l 41) = {5,41} 

__-- 
G(5 v13 l 17) = {52,13 l 17) a(13 v5 l 41) = {132,5g41 1 

_ ___. _-_ 
cr(37 l/13.17) = {37$13 l 17) o(17 V5.41) = { 172,5 l 41) 

---- 
a(5 l 37 1/13 l 17) = (52372,13 l 17) o(13 l 17 1/5 l 4i) = (172, B325 l 41) 
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